Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Transl Med ; : eabn7979, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2233623

ABSTRACT

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020 - the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures de-coupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86-98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred, using a phylodynamic model. We found that transmission slowed 35-63% upon outbreak detection in summer 2020, but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.

2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: covidwho-1078660

ABSTRACT

The investigation of migratory patterns during the SARS-CoV-2 pandemic before spring 2020 border closures in Europe is a crucial first step toward an in-depth evaluation of border closure policies. Here we analyze viral genome sequences using a phylodynamic model with geographic structure to estimate the origin and spread of SARS-CoV-2 in Europe prior to border closures. Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree of the early pandemic and coinfer the geographic location of ancestral lineages as well as the number of migration events into and between European regions. We find that the predominant lineage spreading in Europe during this time has a most recent common ancestor in Italy and was probably seeded by a transmission event in either Hubei, China or Germany. We do not find evidence for preferential migration paths from Hubei into different European regions or from each European region to the others. Sustained local transmission is first evident in Italy and then shortly thereafter in the other European regions considered. Before the first border closures in Europe, we estimate that the rate of occurrence of new cases from within-country transmission was within the bounds of the estimated rate of new cases from migration. In summary, our analysis offers a view on the early state of the epidemic in Europe and on migration patterns of the virus before border closures. This information will enable further study of the necessity and timeliness of border closures.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/isolation & purification , COVID-19/virology , Europe/epidemiology , Genome, Viral , Humans , Phylogeography , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL